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Dendrimer-encapsulated subnano Pd clusters catalyze se-
lective hydrogenation of 1,3-cyclooctadiene to cyclooctene. The
catalytic activity increases with the size of the subnano Pd
clusters. The activity of the threefold hollow sites of the subnano
Pd clusters plays an important role in the hydrogenation
reaction.

Metal nanoparticles (NPs) have received much attention in
various fields, including catalysis, optics, and electronics, due
to the difference in their chemical and physical properties
compared to mononuclear metal atoms and bulk metals.1 Among
NPs, small clusters of a range of diameters less than 1 nm,
known as subnano metal clusters, are considered a new material
since they bridge the gap between mononuclear metal atoms and
NPs.2 Subnano metal clusters have significant advantages in
terms of efficiency because they possess extremely large surface-
to-volume ratios, and also large numbers of coordinatively
unsaturated surface atoms, which are expected to show unique
catalytic properties. Several attractive methods for synthesizing
subnano metal clusters have been developed using organic
polymers3a3c and inorganic materials.3d3g However, size-selec-
tive synthesis of subnano metal clusters has been challenging
due to their instability®they have a tendency to aggregate into
larger NPs®and consequently, the catalysis of subnano metal
clusters and the size effect are still unclear.4

We recently succeeded in the controlled synthesis of
subnano-ordered Pd clusters consisting of a specific number of
Pd atoms (Pd4, Pd8, and Pd16) within fifth generation poly-
(propylene imine) (PPI) dendrimers (G5-Pd0y, y = 4, 8, and 16).5

Herein, we investigate the application of dendrimer-encapsu-
lated subnano Pd clusters in the hydrogenation of 1,3-cyclo-
octadiene (1,3-COD) in order to reveal size-dependent catalysis.

Dendrimer-encapsulated subnano Pd clusters of G5-Pd04,
-Pd08, and -Pd016 were synthesized according to a previous paper
from our laboratory.5 Briefly, an appropriate amount of aqueous
solution of Na2PdCl4 was added to a chloroform solution of fifth
generation triethoxybenzamide-terminated PPI dendrimer, G5-
TEBA (Figure 1A), giving dendrimer-encapsulated Pd2+ ions,
G5-PdIIy (y denotes the number of precursor Pd ions in one
dendrimer; y = 4, 8, and 16), and these were reduced with an
aqueous solution of KBH4, with vigorous stirring, to form
Pd0 clusters, G5-Pd0y. Curve-fitting analysis of inverse Fourier-
transform (FT) of k3-weighted PdK-edge extended X-ray
absorption fine structure (EXAFS) (Figure 2) revealed that the
coordination numbers (CNs) of the PdPd shell of G5-Pd0y
(y = 4, 8, and 16) were 3.2, 4.6, and 5.9, respectively
(Table S212). The nuclearities of the Pd clusters were estimated
to be 4, 8, and 16, respectively, which match the number of
preorganized Pd2+ ions within each dendrimer (Figure 1B).

The preparation of G5-Pd0y using larger amounts of Pd2+

ions was also examined. Notably, the CN of the PdPd shell in
G5-Pd032 was close to that of G5-Pd016, as confirmed by PdK-
edge EXAFS (Table S212). This indicated that G5-Pd032 might
consist of two Pd16 clusters encapsulated within one dendrimer
(Figure 1B). The internal void spaces of the G5-TEBA dendri-
mer may fit the size of the Pd16 cluster.

The catalytic performances of the dendrimer-encapsulated
subnano Pd clusters G5-Pd0y (y = 4, 8, 16, and 32) were
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Figure 1. (A) Structure of G5-TEBA dendrimers. (B) G5-Pd0y
(y = 4, 8, 16, and 32) and subnano Pd clusters within G5-TEBA.
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Figure 2. Fourier transforms of k3-weighted PdK-edge
EXAFS experimental data for (a) G5-Pd04, (b) used G5-Pd04,
(c) G5-Pd08, (d) used G5-Pd08, (e) G5-Pd016, (f) used G5-Pd016,
(g) G5-Pd032, and (h) used G5-Pd032.
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examined in the hydrogenation of 1,3-COD.6 All G5-Pd0y tested
promoted hydrogenation selectively, giving cyclooctene in over
99% yield. Interestingly, the initial turnover frequency (TOF/
min¹1), normalized to the total number of surface Pd atoms in
the Pd clusters within G5-Pd0y, increased with increasing Pd
cluster size; the TOFs of G5-Pd0y (y = 4, 8, and 16) were 10, 31,
and 62, respectively (Figure 3).7 Moreover, the TOF of G5-Pd032
(65) was similar to that of G5-Pd016 (62), which is consistent
with the presence of two Pd16 clusters within one dendrimer
(vide supra).

After the 1,3-COD hydrogenation reaction, FT of the k3-
weighted PdK-edge EXAFS spectra of G5-Pd0y (y = 4, 8, 16,
and 32) gave similar peak intensities and CNs for the PdPd
shell to those of fresh clusters (Figure 2 and Table S212).
Furthermore, the TOFs of G5-Pd0y were maintained in repeated
addition of 1,3-COD (Table S312). These phenomena suggest
that the original sizes of the Pd clusters remain unchanged
during the hydrogenation reaction.

In order to investigate the size effect of the subnano Pd
clusters, preliminary kinetic studies were carried out. The initial
reaction rate of the 1,3-COD hydrogenation using G5-Pd0y
(y = 4, 8, and 16) was dependent on the partial pressure of
H2 and independent of the concentration of 1,3-COD
(Figure S2).8,12 The kinetic isotope effect was observed for the
hydrogenation using D2 (kH/kD = 1.5). From the above results,
dissociative adsorption of H2 is considered as the rate-determin-
ing step in the 1,3-COD hydrogenation.9 Zhi et al. and others
reported that the density functional theory (DFT) calculations of
dissociative adsorption of H2 on small Pd clusters revealed that
the configuration with H atoms adsorbed on Pd threefold hollow
sites is the most stable structure.10 In our case, the TOF
normalized to the total number of the threefold hollow sites in
the Pd cluster also increased with increasing the size of subnano
Pd clusters (see the Supporting Information).12 Namely, the size
effect on catalytic activity in the hydrogenation reaction was
derived from the difference of activity of the threefold hollow
sites of the Pd cluster.11

In conclusion, investigation of the catalysis of dendrimer-
encapsulated subnano Pd clusters in the 1,3-COD hydrogenation
showed that the initial rate of the hydrogenation was dependent
on the size of the Pd clusters, and the TOF of the hydrogenation
reaction increased with the Pd cluster size. The activity of the
threefold hollow sites of the subnano Pd clusters in dissociative
adsorption of H2 played an important role in the 1,3-COD

hydrogenation reaction. Furthermore, the preparation of G5-Pd0y
using a larger number of Pd2+ ions succeeded in the formation
of two Pd16 clusters within one dendrimer.
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Figure 3. TOFs for hydrogenation of 1,3-cyclooctadiene using
G5-Pd0y.
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